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Structural reliability applications of non-stationary spectral characteristics 

Michele Barbato1, A.M.ASCE, and Joel P. Conte2 , M.ASCE.

ABSTRACT 

This paper presents new closed-form analytical approximations to the first-passage problem in structural 

reliability by using the exact closed-form solutions for the spectral characteristics of non-stationary 

random processes. The first-passage problem applied to a structural system possibly with random 

parameters and subjected to stochastic loading consists in computing the probability of a response 

quantity exceeding a deterministic threshold in a given exposure time. This paper also investigates, based 

on benchmark problems, the absolute and relative accuracy of analytical approximations of the time-

variant failure probability, such as Poisson, classical Vanmarcke and modified Vanmarcke 

approximations, in the case of non-stationary random vibration. The classical and modified Vanmarcke 

approximations are expressed as time integrals of the closed-forms of the corresponding hazard functions. 

These closed-forms refer to linear elastic systems subjected to stationary and non-stationary base 

excitation from at rest initial conditions, and are obtained using recently developed exact closed-form 

solutions for the time-variant bandwidth parameter. These closed-form Vanmarcke’s approximate 

solutions to the first-passage problem are compared to the well known Poisson approximation and 

accurate simulation results obtained via the Importance Sampling using Elementary Events (ISEE) 

method for two benchmark applications: (1) a set of linear elastic SDOF systems defined by different 

natural periods and damping ratios, and (2) an idealized yet realistic three-dimensional asymmetric steel 

building model. The linear elastic SDOF systems are subjected to white noise base excitation from at rest 

initial conditions, while the steel building model is subjected, from at rest initial conditions, first to white 

noise and then to a time-modulated colored noise base excitation. The retrofit of this second benchmark 

structure with viscous dampers is also considered, allowing (1) to illustrate the use of the newly available 

closed-form approximations of the failure probability for non-classically damped linear elastic systems, 
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and (2) to show an example of practical use in structural engineering of the presented analytical solutions. 

The results presented in this study show that, for non-stationary random vibration problems, the two 

Vanmarcke approximations can improve considerably the estimates of the time-variant failure probability 

for the first-passage problem when compared to the simpler Poisson approximation. 

CE DATABASE SUBJECT HEADINGS: Stochastic processes; time-variant failure probability; spectral moments; non-

classically damped MDOF systems; Monte Carlo simulation; importance sampling using elementary events.
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INTRODUCTION 

In many engineering fields, the importance of using stochastic processes to model dynamic loads such as 

earthquake ground motions and wind action on civil structures, ocean wave induced forces on ships and 

offshore structures, effects of road/track surface roughness on automotive structures, and atmospheric 

turbulence on aerospace structures has been widely recognized. Extensive research has been devoted to 

the development of analytical methods and numerical simulation techniques related to modeling of 

stochastic loads and analysis of their effects on structures (Lin 1976; Priestley 1987; Lutes and Sarkani 

2004). These effects are stochastic in nature and, in general, are represented by random processes which 

are non-stationary in both amplitude and frequency content (Yeh and Wen 1990; Papadimitriou 1990; 

Conte 1992). Modern design codes consider loading uncertainty as well as parameter and modeling 

uncertainties to ensure satisfactory designs. Methodologies for time-variant reliability analysis have 

gained significant importance, as they provide a sound analytical basis for evaluating probabilistically the 

satisfaction of prescribed structural performance criteria, e.g., in the context of the emerging 

Performance-Based Earthquake Engineering (PBEE) methodology (Cornell and Krawinkler 2000; 

Moehle and Deierlein 2004) and the new generation of seismic design codes inspired by the PBEE 

methodology (AASHTO 1998; ICC 2003; BSSC 2004; ATC-58 2005). 

The probability of failure over a given interval of time (i.e., probability of a response vector process out-

crossing a general limit-state surface during an exposure time) is the fundamental result sought in a time-

variant reliability analysis. For a large class of structural applications, the failure condition can be

identified as the exceedance of a scalar deterministic threshold by a linear combination of scalar response 

quantities. To date, no exact closed-form solution of this problem (referred to in the literature as the first-

passage problem) is available, even for the simplest case of structural model (deterministic linear elastic 

SDOF system) subjected to the simplest stochastic load model (stationary Gaussian white noise). The 

Monte Carlo simulation technique is the only general method accommodating for non-stationarity and 

non-Gaussianess of the excitation as well as nonlinearity in the structural behavior and 
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uncertainty/randomness in the structural parameters. However, it is computationally extremely expensive 

if not impossible. Nevertheless, an analytical upper bound of the time-variant probability of failure can be 

readily obtained when the mean out-crossing rates of the response quantities of interest are available (Lin 

1976). Several direct approximations of this failure probability also exist that make use of various 

statistics of the response quantities of interest (Crandall 1970; Wen 1987). In particular, Poisson and 

Vanmarcke approximations offer a good compromise between accuracy and computational effort (Rice 

1944, 1945; Corotis et al. 1972). Vanmarcke suggested two different approximations (Vanmarcke 1975), 

called classical and modified Vanmarcke approximation, respectively, which both require the 

computation of the bandwidth parameter of the considered stochastic process, in addition to the other 

stochastic moments required for computing the mean out-crossing rate and Poisson approximation. The 

two Vanmarcke approximations were first derived for stationary problems (stationary Vanmarcke 

approximations), and then extended to non-stationary problems (non-stationary Vanmarcke 

approximations) (Corotis et al. 1972; Vanmarcke 1975). More recent work by Di Paola (1985) and 

Michaelov et al. (1999a,b) provided new insight into the non-stationary spectral characteristics required 

by the non-stationary Vanmarcke approximations, suggesting a more appropriate definition of the 

bandwidth parameter for real-valued non-stationary random processes. In previous work (Barbato and 

Conte 2008), the authors extended these last results to the computation of stochastic characteristics of 

complex-valued non-stationary random processes and used such extension for finding the exact closed-

form solution of the time-variant bandwidth parameter for the classical problem of SDOF and MDOF 

linear elastic systems subjected to white noise excitation from at rest initial conditions. In Barbato and 

Vasta (2010), the closed-form solution of the time-variant bandwidth parameter was found for classically 

and non-classically damped MDOF linear elastic systems subjected to time-modulated colored noise 

excitation. 

This paper focuses on closed-form analytical approximations to the first-passage problem in structural 

reliability. After defining the problem, existing analytical approximations are briefly reviewed. Then, the 

exact closed-forms for the spectral characteristics of non-stationary random processes, recently derived by 
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the authors, are used to define integral representations of such analytical approximations of the time-

variant failure probability, namely Poisson, classical Vanmarcke and modified Vanmarcke 

approximations. Finally, two sets of benchmark models, consisting of a set of linear elastic SDOF 

systems with different natural periods and damping ratios and a realistic three-dimensional asymmetric 

three-story building model, are used to compare these analytical approximations with accurate simulation 

results obtained through the Importance Sampling using Elementary Events (ISEE) method (Au and Beck 

2001a). The absolute and relative accuracy of the considered closed-form approximations to the time-

variant failure probability, obtained at a very small fraction of the computational cost of the ISEE results, 

is carefully investigated for a wide range of values of the failure probability. To the authors’ knowledge, 

this paper presents the first rigorous appraisal of the accuracy of the two Vanmarcke approximations of 

the time-variant failure probability for the first-passage reliability problem in the context of non-

stationary random vibration. 

It is noteworthy that structural reliability analysis of nonlinear (deterministic or uncertain) dynamic 

systems is a very active area of research. In fact, several methodologies have been recently developed to 

numerically estimate the time-variant failure probability relative to the first-passage problem for nonlinear 

dynamic models of structures, e.g., the subset simulation method (Au and Beck 2001b; Ching et al. 

2005a,b; Katafygiotis and Cheung 2005), the tail equivalent linearization method (Fujimura and Der 

Kiureghian 2007), the path integration method (Naess and Moe 2000), advanced/enhanced Monte Carlo 

simulation-based methods (Pradlwarter and Schueller 2004, Pradlwarter et al. 2007, Naess et al. 2009),

and the hybrid Design Point - Response Surface - Simulation method (Barbato et al. 2008). Analytical 

solutions for the time-variant failure probability, such as the ones presented in this paper for the case of 

linear elastic systems subjected to Gaussian non-stationary excitations, are extremely useful for 

validation, in the linear range, of both existing and new numerical methods for time-variant structural 

reliability analysis. 
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FIRST-PASSAGE PROBLEM IN STRUCTURAL RELIABILITY 

In the present study, the time-variant probability of failure of a dynamic structural system is defined as the 

probability that a quantity (linearly) related to the displacement and velocity responses (e.g., absolute 

displacement, relative displacement, elastic force) of the system exceeds a given (deterministic and time 

invariant) threshold . The problem of evaluating this time-variant probability of failure is also known as 

first-passage problem and has been presented in the literature as single-barrier problem (random process 

up-crossing or down-crossing a given threshold) or as double-barrier problem (absolute value of the 

random process exceeding a given threshold). 

An analytical upper-bound of the time-variant probability of failure, Pf, X( +, t), is obtained by integrating 

in time the mean up-crossing rate, X( +, t), of the considered process, X(t), corresponding to the fixed 

deterministic threshold  (single-barrier problem), as 

t

f , X X
n 1 n 1 0

P , t P N t n n P N t n E N t , d
 (1) 

where E[…] = expectation operator, and N(t) = number of up-crossings up to time t. The mean up-

crossing rate X( +, t) can be obtained from the well known Rice formula (Rice 1944, 1945), for which a 

closed-form solution is available in the case of Gaussian processes (Lutes and Sarkani 2004). In general, a 

numerical estimate of X( +, t) can be obtained through the limiting formula proposed by Hagen and 

Tvedt (1991). The time-variant failure probability Pf, X( +, t) is commonly expressed in the following 

functional form 

t

f , X X

0

P , t 1 P X t 0 exp h , d
(2) 

where P[X(t = 0) < ] = probability that, at time t = 0, the random process X(t) is below the failure 

threshold  (i.e., probability that the system is safe at time t = 0) and hX( +, t) = time-variant hazard 

function defined such that Xh , t dt
 = probability of an up-crossing of level  during the time interval 

Journal of Engineering Mechanics. Submitted August 22, 2009; accepted November 16, 2010; 
      posted ahead of print November 18, 2010. doi:10.1061/(ASCE)EM.1943-7889.0000238

Copyright 2010 by the American Society of Civil Engineers



Acc
ep

ted
 M

an
us

cri
pt 

Not 
Cop

ye
dit

ed

 7

[t, t+dt] given no up-crossing up to time (i.e., probability of first up-crossing event in time interval [t, 

t+dt]). For at rest initial conditions, P[X(t = 0) < ] = 1. Up to date, only approximate analytical and 

numerical solutions are available for the hazard function even for the simplest dynamic system, i.e., 

deterministic linear elastic SDOF oscillator (Crandall, 1970). Extension of the functional form in Eq. (2)

to the double-barrier problem is straightforward and can be formally expressed as 

t

f , X X

0

P , t 1 P X t 0 exp h , d
(3) 

where Pf, |X|( , t) and  h|X| ( , t) = time-variant probability of failure and hazard function, respectively, for 

process |X(t)| and threshold level . In this paper, both single- and double-barrier problems are 

considered. It is noticed here that, once the time-variant hazard function is known, the failure probability 

can be estimated by evaluating through numerical quadrature the time integrals in Eqs. (2) and (3). 

The simplest approximation for the hazard function is the Poisson hazard function, hX, P (
+, t) = X( +, t),  

obtained by assuming that the up-crossing events are statistically independent with their occurrence in 

time following a (memoryless) Poisson process. This assumption becomes increasingly accurate for 

increasing response threshold level and increasing bandwidth of the response process (e.g., as produced 

by increasing the damping level in a linear elastic system). For low threshold levels and/or narrow-band 

processes, the Poisson hazard function yields conservative values of the probability of failure. An 

improved estimate of the time-variant failure probability has been developed by Vanmarcke (1975), 

considering the envelope process as defined by Cramer and Leadbetter (1967). This improved estimate, 

referred to as classical Vanmarcke approximation, is based on the two-state Markov process assumption 

and takes into account (1) the fraction of time, termed fractional time, that the envelope process spends 

above the threshold level  and (2) the fact that up-crossings of the envelope process are not always 

associated with one or more up-crossings of the process itself. The first consideration is important for low 

threshold levels, while the second consideration can be relevant for high threshold levels. The hazard 

function obtained for the non-stationary case is 
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X
X,VM X 2

X

1 exp 2 q t
t

h , t , t
1

1 exp
2 t

(4) 

where q(t) = time-variant bandwidth parameter, and X(t) = time-variant standard deviation of process 

X(t). Vanmarcke (1975) also suggested an empirical modification of Eq. (4), in which the bandwidth 

parameters q(t) is substituted with [q(t)]1.2, to account for super-clamping effects, leading to the modified 

Vanmarcke approximation 

1.2

X
X, mVM X 2

X

1 exp 2 q t
t

h , t , t
1

1 exp
2 t

(5) 

The hazard functions for the double-barrier problem corresponding to those in Eqs. (4) and (5) were 

derived for Gaussian processes and are obtained by substituting in these equations + with , X( +, t) with 

|X| ( , t) = 2 X( +, t), and 2  with 2 . In the original formulation (Corotis et al. 1972, Vanmarcke 

1975), the bandwidth parameter was computed from the convergent part of the integrals defining the 

geometric spectral moments of the process of interest. In this paper, the bandwidth parameter is correctly 

computed from the non-geometric spectral characteristics of the considered stochastic process (Michaelov 

et al. 1999a), and its exact closed form, derived in Barbato and Conte (2008), is given in the next section.  

USE OF SPECTRAL CHARACTERISTICS IN STRUCTURAL RELIABILITY 

The spectral characteristics of a process X(t) are necessary in order to compute its mean up-crossing rates 

and hazard functions. The non-geometric spectral characteristics of two zero-mean random processes 

X1(t) and X2(t) considered jointly are defined as (Barbato and Conte 2008) 

i k i k1 2
1 2 1 2

ik,X X X X X X
c t , t d t

(6) 
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in which 
i k

1 2X X
, t

 = evolutionary cross-power spectral density (Priestley 1987) of processes 

i i i
1 1X d X dt  and

k k k
2 2X d X dt , and 

i k
1 2X X

t
= time-variant cross-covariance of processes 

i
1X

and
k

2X . The particular case X1(t) = X2(t) = X(t) gives
2

00,XX Xc t t ,
2

11,XX X
c t t ,

and 01,XX XXX XX X
c t t t t t , in which XX

t  = cross-correlation coefficient between 

process X(t) and its first time-derivative X t . A superposed dot denotes differentiation with respect to 

time. For the particular case X1(t) = X(t) and X2(t) = Y(t) = auxiliary process obtained as time modulation 

(by the same modulating function as the process X(t)) of the Hilbert transform of the stationary process 

embedded in X(t) (Michaelov et al. 1999a), the first-order spectral characteristic 01,XY XY
c t t  is 

obtained. The auxiliary process Y(t) is commonly used to define the envelope and phase processes of a 

non-stationary process (Muscolino 1988). The time-variant bandwidth parameter q(t) of process X(t) is

computed as 

1 22
XY

2 2
X X

t
q t 1

t t
(7) 

Eq. (7) was derived in Barbato and Conte (2008) by extending the definition of the bandwidth parameter 

q(t) for real-valued non-stationary processes (Michaelov et al. 1999a) to complex-valued non-stationary 

processes. It can be shown that the value of q(t) defined in Eq. (7) is bounded between zero and one for 

real-valued processes, with values close to zero corresponding to narrow-band processes and values close 

to one corresponding to broad-band processes. 

APPLICATION EXAMPLES 

SDOF linear elastic oscillators 

The first application example consists of a linear elastic SDOF oscillator subjected to a zero-mean 

Gaussian white noise base excitation time-modulated by a unit-step function, i.e., with at rest initial 
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conditions. For this problem, exact solutions for the time-variant spectral characteristics up to the second 

order are available in closed-form (Barbato and Conte 2008). Fig. 1 plots the normalized second-order 

stochastic moments of the displacement (relative to the base) U(t) and its first time derivative U(t) of a 

linear elastic SDOF system with natural period T0 = 0.5s and damping ratio  = 0.05. These closed-form 

solutions are applied in this study to obtain exact time-variant mean up-crossing rates, as well as Poisson 

and Vanmarcke approximations to the time-variant failure probability for the double-barrier problem, as 

defined previously. The relative displacement response U(t) of the system is a zero-mean Gaussian

process, for which the exact time-variant mean up-crossing rate for a given deterministic threshold is 

available in closed-form. The effects on the failure probability of the system parameters (i.e., natural 

circular frequency, 0, and damping ratio, ) and response threshold level (normalized with respect to the 

stationary value of the standard deviation of the response process as / U∞) are investigated using the 

closed-form solutions available. The effect of the intensity of the excitation can be obtained indirectly 

from the effect of the threshold level, since due to system linearity the response scales linearly with 

respect to the intensity or magnitude of the excitation as measured by the square root of the white noise 

power spectral density, 0  [m/s3/2]. 

Figs. 2 through 7 show some selected analysis results for the out-crossing of specified threshold levels 

(double-barrier problem) by the response of a linear elastic SDOF system with natural period T0 = 0.5s 

and damping ratio  = 0.05 subjected to a white noise base excitation of power spectral density 0 = 1

m2/s3 from at rest initial conditions. Figs. 2, 4, and 6 plot the time-variant mean out-crossing rate, , the 

classical Vanmarcke hazard function, hVM, and the modified Vanmarcke hazard function, hmVM, for the 

relative displacement response process U(t) of the linear elastic SDOF system defined above and response 

threshold levels = 2 U∞, 3 U∞, and 4 U∞, respectively, in which U∞ = stationary standard deviation of 

response process U(t). Figs. 3, 5, and 7 show for the same SDOF system the time-variant expected 

number of out-crossings, E[N], and the time-variant failure probability estimates obtained from the 

Poisson approximation, Pf, P, the classical Vanmarcke approximation, Pf, VM, and the modified Vanmarcke 
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approximation, Pf, mVM, respectively. Figs. 3, 5, and 7 also provide the failure probability at different 

instants of time obtained by Importance Sampling using Elementary Events (ISEE) (Au and Beck 2001) 

with a coefficient of variation c.o.v. = 0.01, Pf, sim. The equations needed to compute the estimates of the 

failure probability, Pf, sim, and of its coefficient of variation, c.o.v.(Pf, sim), are taken from Au and Beck 

(2001). The value of c.o.v.(Pf, sim) = 0.01 was chosen in order to obtain accurate estimates of the time-

variant failure probability. It is noteworthy that the computational time corresponding to each analytical 

approximate solution for the time history of the time-variant failure probability is several hundred times 

smaller than the computational time required to obtain the ISEE estimate of the time-variant failure 

probability at a single instant of time. 

For the case corresponding to the threshold level = 2 U∞, the hazard functions obtained using the 

classical and modified Vanmarcke approximations assume much lower values than the corresponding 

mean out-crossing rate, as shown in Fig. 2. For the very high values of the failure probability found in this 

case, the analytical upper bound provided by E[N] is not useful, since the expected number of out-

crossings is larger than one after about 3 seconds of white noise excitation, and the Poisson 

approximation largely overestimates the probability of failure (see Fig. 3). On the other hand, the two 

Vanmarcke approximations are both in good agreement with the simulation results, with better agreement 

reached by the classical Vanmarcke approximation for t ≤ 2.5s and by the modified Vanmarcke 

approximation for t ≥ 3.0s. In this specific case, the failure probability at different instants of time was 

also computed using crude Monte Carlo Simulation (MCS), the use of which was possible due to the 

large values assumed by the time-variant probability of failure. The results obtained by crude MCS were 

found in very good agreement with those resulting from ISEE.  

The mean out-crossing rate corresponding to the threshold = 3 U∞ is larger than the classical and 

modified Vanmarcke hazard functions (see Fig. 4), but the relative differences are smaller than for lower 

response thresholds. It is also observed that as the response threshold increases, the time required for the 

mean out-crossing rate and the hazard functions to reach stationarity increases as well. From the 

Journal of Engineering Mechanics. Submitted August 22, 2009; accepted November 16, 2010; 
      posted ahead of print November 18, 2010. doi:10.1061/(ASCE)EM.1943-7889.0000238

Copyright 2010 by the American Society of Civil Engineers



Acc
ep

ted
 M

an
us

cri
pt 

Not 
Cop

ye
dit

ed

 12

comparison of the analytical approximations of the time-variant failure probability with the accurate 

ISEE-based estimate thereof shown in Fig. 5, it is observed that: (1) the expected number of out-crossings 

(analytical upper bound of the failure probability) is almost double the failure probability obtained by 

ISEE and the Poisson approximation improves only slightly over the upper bound results; (2) the two 

Vanmarcke approximations provide good estimates of the failure probability, but in this case the classical 

Vanmarcke approximation is in better agreement overall with the ISEE results. Nevertheless, the ISEE 

results shift progressively away from the classical to the modified Vanmarcke approximation results as

time elapses.    

For the relative displacement response threshold = 4 U∞, the relative differences between the 

Vanmarcke approximations and the mean out-crossing rate are smaller than for lower thresholds, as 

shown in Fig. 6. In this case, the expected number of out-crossings and the Poisson approximation 

practically coincide and their relative differences with the ISEE results are lower than in the previous two 

cases (see Fig. 7). The classical Vanmarcke approximation almost coincides with the ISEE results, while 

the modified Vanmarcke approximation underestimates the failure probability.  

Fig. 8 compares the estimated relative displacement response hazard curves (i.e., failure probability 

versus normalized relative displacement threshold) with ISEE results for the considered linear elastic 

SDOF system subjected to 5.0s of white noise base excitation from at rest initial conditions. The failure 

probability estimates are computed based on the Poisson approximation as well as the classical and 

modified Vanmarcke approximations. The ISEE results have a coefficient of variation of 1% for the 

failure probability estimate and are therefore accurate. As expected from previous results available in the 

literature (Crandall 1970), it is observed that the two Vanmarcke approximations provide significantly 

improved estimates of the failure probability compared to the Poisson approximation, particularly in the 

threshold level range 2 ≤ / U∞ ≤ 4. For increasing threshold levels, all three approximations appear to 

converge asymptotically to the “exact” failure probability. Notice that the analytical relative displacement 

response hazard curves are computed for a constant threshold level increment of 0.1 U∞ and are obtained 
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at an extremely small fraction of the computational cost of the ISEE results. Table 1 reports the values of 

the time-variant failure probability estimated using the Poisson approximation, the classical and modified 

Vanmarcke approximations, and ISEE analysis for a linear elastic SDOF system with natural period T0 =

0.5s, subjected to white noise base excitation from at rest initial conditions. Results are given for different 

normalized relative displacement response thresholds ( / U∞ = 2, 3, and 4, i.e., the range in which the 

various approximations differ the most as shown in Fig. 8), several damping ratios (  = 1%, 5%, 10%), 

and different exposure times (normalized with respect to the natural period, i.e., 5T0 and 10T0). From the 

results shown in Table 1, the following observations are made: (1) the two Vanmarcke approximations 

provide failure probability estimates in better agreement with the ISEE analysis results (i.e., more 

accurate) than the Poisson approximation; (2) the accuracy of the modified Vanmarcke approximation 

improves with increasing exposure time to the white noise excitation; (3) the relative accuracy of the two 

Vanmarcke approximations in estimating the failure probability depends on both the order of magnitude 

of the failure probability (for small failure probabilities, e.g., Pf < 1e-4, the classical Vanmarcke 

approximation is more accurate than the modified Vanmarcke approximation) and the damping ratio (for 

 = 5%, the modified Vanmarcke approximation tends to be more accurate than the classical Vanmarcke 

approximation, for  = 10%, the classical Vanmarcke approximation is more accurate than the modified 

Vanmarcke approximation, for  = 1% the more accurate of the two Vanmarcke approximations depends 

on the exposure time and the magnitude of the failure probability).    

Three-dimensional asymmetric building (linear elastic MDOF system) 

The idealized three-dimensional (3-D) asymmetric building shown in Fig. 9 is used in this study as 

benchmark problem of a linear elastic MDOF system. This building consists of three floor diaphragms, 

assumed infinitely rigid in their own plane, supported by wide flange steel columns of section W14 145 .

Each floor diaphragm consists of an 18cm thick reinforced-concrete slab with a weight density of 

36kN/m3. The axial deformations of the columns are neglected. The modulus of elasticity of steel is taken 

as 200GPa. The motion of each floor diaphragm is completely defined by three DOFs defined at its center 
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of mass, namely the relative displacements with respect to the ground in the x-direction, UXi, and in the y-

direction, UYi, and the rotation about the vertical z-axis, Zi, with i = 1, 2, 3. Both classically and non-

classically damped structural models of this building are considered in this study. For the case of classical 

damping, each modal damping ratio is taken as 2%. To physically realize the non-classical damping case, 

diagonal viscous damping elements (e.g., fluid viscous braces) are added as shown in Fig. 9. The damping 

coefficient of each viscous damping element is taken as 0.1kN∙s/mm. The undamped natural circular 

frequencies of this building are given in Table 2. 

White noise base excitation 

As first benchmark for linear elastic MDOF systems, the building considered here is subjected, from at 

rest initial conditions, to an earthquake ground motion (defined in terms of ground acceleration) acting at 

45 degrees with respect to the x-axis and modeled as a white noise process with power spectral density 0

= 0.0625m2/s3. Figs. 10 through 20 show some selected results of the time-variant reliability analysis of 

the considered building structure with and without the viscous dampers. Three response quantities are 

considered: the horizontal displacement at the third floor in the x-direction, UX3 (Figs. 10 through 14), 

which is the weak direction of the building along which the dampers are active, the horizontal 

displacement at the third floor in the y-direction, UY3 (Figs. 15 through 17), which is the strong direction 

of the building, and the horizontal drift between the third and second floors in the x-direction, X3 = UX3 - 

UX2 (Figs. 18 through 20). As in the first application example, the results presented here refer to the 

double-barrier first-passage problem for the considered response quantities. 

Fig. 10 plots the time histories of the normalized variance and bandwidth parameter of UX3 for both the 

classically and non-classically damped 3-D asymmetric building. The displacement response variances 

are normalized with respect to the variance of UX3 at time t = 5.0s for the classically damped system (i.e., 

building without viscous dampers). The addition of viscous dampers to the building produces two distinct 

effects on the variance of the response UX3: (1) the variance is significantly reduced (at time t = 5.0s,
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2 2
d u = 0.39), and (2) the response stationarity conditions are reached much faster. The effects of the 

viscous dampers on the time history of the bandwidth parameter are the reduction of the time needed to 

reach stationarity and the increase of the stationary value, which are consistent with the increase of 

damping in the system (see Barbato and Conte 2008).  

Fig. 11 shows the time-variant mean out-crossing rate, , as well as the classical and modified Vanmarcke 

hazard functions (i.e., hVM and hmVM, respectively) for the DOF UX3 corresponding to the deterministic 

threshold = 0.114m (i.e., roof drift ratio = 1%) and relative to the classically damped 3-D building. The 

two Vanmarcke hazard functions are significantly lower than the mean out-crossing rate function. Fig. 12

compares, for the same analysis case considered in Fig. 11, the various analytical approximations of the 

failure probability (i.e., expected number of out-crossings, E[N], Poisson approximation, Pf, P, classical 

Vanmarcke approximation, Pf, VM, and modified Vanmarcke approximation, Pf, mVM) with the simulation 

results obtained using the ISEE method, Pf, sim. In this specific case, the simulation results are almost in 

perfect agreement with the modified Vanmarcke approximation. The failure probability after 5.0s of

excitation is of the order of 1%. This failure probability (conditional on the given magnitude 0 of the 

white noise ground motion excitation) is quite large and can be considered unsatisfactory for the given 

threshold, thus suggesting a retrofit of the building using the viscous damping system previously defined. 

Figs. 13 and 14 show the same information as in Figs. 11 and 12, respectively, but for the case of the non-

classically damped building (i.e., building with viscous dampers). The mean out-crossing rate and hazard 

functions are four orders of magnitude lower and the failure probability estimates seven orders of 

magnitude lower than for the classically damped building (i.e., building without viscous dampers). Here, 

the classical Vanmarcke approximation is in better agreement with the ISEE results (i.e., more accurate) 

than the modified Vanmarcke approximation; it slightly underestimates the time-variant failure 

probability. In this case, the effectiveness of viscous dampers in reducing the probability of DOF UX3 out-

crossing the level considered is noteworthy. 

Fig. 15 plots the time histories of the normalized variance and bandwidth parameter of UY3 for both the 
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classically and non-classically damped 3-D asymmetric building. The displacement response variances 

are normalized with respect to the variance of UY3 at time t = 5.0s for the classically damped system. The 

effects of the viscous dampers on the statistics of UY3 are very small and consist of a small reduction in 

the variance of UY3, while the changes in the time history of the bandwidth parameter are not visible at the 

scale used in Fig. 15. This result was expected, since the action of the viscous dampers is directed along 

the x-direction of the building and affects the y-direction only indirectly, through the coupling with the 

torsional modes of vibration. Figs. 16 and 17 provide a comparison of the various analytical 

approximations with the ISEE-based estimate of the failure probability related to UY3 and threshold =

0.114m for the classically and non-classically damped 3-D asymmetric building, respectively. In this 

case, the failure probability is already very small for the classically damped building and reduces further 

by a factor of two for the non-classically damped building. The simulation results lie between the 

estimates from the classical and modified Vanmarcke approximations. 

Fig. 18 shows the time histories of the normalized variance and bandwidth parameter of the interstory 

drift X3 for both the classically and non-classically damped 3-D asymmetric building. The drift response 

variances are normalized with respect to the variance of X3 at time t = 5.0s for the classically damped 

system. Variances and bandwidth parameters for drifts and any other response quantities linearly related 

to displacement responses can be computed directly from the variances and bandwidth parameters of the 

latter quantities (Barbato and Conte 2008). Regarding the normalized variance and bandwidth parameter 

of X3, it is observed that: (1) the variance of the drift response is much lower for the non-classically 

damped than for the classically damped building, (2) stationarity is reached faster for the non-classically 

damped building, and (3) the stationary value of the bandwidth parameter is lower for the non-classically 

damped than for the classically damped building. This last observation (which could appear counter-

intuitive) is due to the fact that although the non-classically damped building has higher modal damping 

ratios (and therefore modal responses with broader bandwidth), its first mode is more predominant than in 

the case of the classically damped building. In other words, the stationary value of the central frequency 
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of each floor relative displacement response process is closer to the natural frequency of the predominant 

mode of vibration in the non-classically damped than in the classically damped building (see Barbato and 

Conte 2008). Figs. 19 and 20 compare the various analytical approximations with the ISEE-based 

estimate of the failure probability for X3 and threshold = 0.0285m (corresponding to an interstory drift 

ratio of 0.75%) for the classically and non-classically damped 3-D building, respectively. For the 

classically damped building, all the analytical approximations overestimate the failure probability 

obtained via the ISEE method, while for the non-classically damped building, the ISEE-based results lie 

between the classical and modified Vanmarcke approximations. Also for the response quantity X3, the 

use of viscous dampers produces a considerable reduction in the time-variant failure probability (five 

orders of magnitude). Also in this second application example, it is observed that the two Vanmarcke 

approximations of the time-variant failure probability are significantly more accurate than the Poisson 

approximation.  

Time-modulated colored noise base excitation 

In order to study the relative accuracy of different analytical approximations of the time-variant failure 

probability in the case of strongly non-stationary input excitations, the benchmark building model is 

subjected to a stochastic earthquake base excitation modeled as a time-modulated colored noise process. 

In this work, the Kanai-Tajimi spectrum (Clough and Penzien 1993) is used to model the basic stationary 

colored noise process. The Kanai-Tajimi spectrum represents the stochastic process obtained by filtering a 

white noise process through a linear filter representing the effects of a soil layer between the bedrock and 

the ground surface. It is expressed as 

g g

4 2 2 2
g g g

A A 0 22 2 2 2 2
g g g

4

4
(8) 

where g gA A  denotes the PSD function of the ground surface acceleration process, 0 = 0.0625m2/s3 is 

the intensity of the ideal white noise acceleration at the base of the soil layer, and g  = 12.5rad/s and g
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= 0.6 represent the natural frequency and damping ratio, respectively, of the soil layer. Thus, g and g

are measures of the predominant frequency and bandwidth, respectively, of the ground surface 

acceleration.  

The ground motion input to the structure is made non-stationary in amplitude by using the well known 

time-modulating function of Shinozuka and Sato (Shinozuka and Sato 1967) defined as 

ga 1 2A t C exp B t exp B t
(9) 

where gaA t
 is the time-modulating function, and C = 25.81, B1 = 0.045 , and B2 = 0.05  are constants 

defining the shape of the time-modulating function. 

Fig. 21 plots the first 30s of the time histories of the normalized variance and bandwidth parameter of UX3

for both the classically and non-classically damped 3-D asymmetric building. The displacement response 

variances are normalized with respect to the maximum value assumed by the variance of UX3 for the 

classically damped system (i.e., 
2
u,max ). The addition of viscous dampers to the building produces two 

distinct effects on the variance of the response UX3: (1) the variance is strongly reduced ( d,max u,max =

0.63, u,max H 0.31% , d,max H 0.20%, where the height of the building H = 11.4m), and (2) its peak 

value is reached earlier. The effects of the viscous dampers on the time history of the bandwidth 

parameter are the reduction of the time needed to reach the asymptotic value and the increase of the 

asymptotic value. This last effect is the same as the one observed in the case of white noise excitation for 

the stationary value of the bandwidth parameter of the response process UX3 (see Fig. 10).

Fig. 22 shows the time-variant mean out-crossing rate, , as well as the classical and modified Vanmarcke 

hazard functions (i.e., hVM and hmVM, respectively) for the DOF UX3 corresponding to the deterministic 

threshold  = 0.114m and relative to the classically damped 3-D building. The two Vanmarcke hazard 

functions assume values significantly lower than the mean out-crossing rate function. For the same 

analysis case, Fig. 23 compares expected number of out-crossings, E[N], Poisson approximation, Pf,P,
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classical Vanmarcke approximation, Pf, VM, modified Vanmarcke approximation, Pf, mVM, and simulation 

results obtained using the ISEE method, Pf, sim. The ISEE simulation results are in good agreement with 

the modified Vanmarcke approximation. The failure probability after 30.0s of excitation is about 5%, thus 

justifying also in this case the need to retrofit the building using the viscous damping system previously 

defined. Figs. 24 and 25 show the same information as Figs. 22 and 23, respectively, but for the case of 

the building retrofitted with viscous dampers. The mean out-crossing rate function, hazard functions, and 

time-variant failure probability estimates are more than three orders of magnitude lower than for the 

building without viscous dampers. It is observed that the ISEE results lie between the Poisson and the 

classical Vanmarcke approximations. Also in this case, the effectiveness of the viscous dampers in 

reducing the probability of DOF UX3 out-crossing the level considered is noteworthy. 

CONCLUSIONS 

This paper presents the application of spectral characteristics of non-stationary random processes to the 

time-variant first-passage problem in structural reliability. The first-passage problem is applied to linear 

elastic models of structural systems and consists of computing the probability of exceeding a given 

deterministic time-invariant threshold by a response quantity (linearly) related to the displacement and 

velocity responses (e.g., absolute displacement, relative displacement, elastic force) of the system. This 

quantity is generally known as time-variant failure probability. Both the classical and modified 

Vanmarcke approximations are computed, through integration (using numerical quadrature) of the closed-

form solutions for the corresponding approximate hazard functions, for linear elastic single-degree-of-

freedom (SDOF) and multi-degree-of-freedom (MDOF) systems subjected to stationary and non-

stationary base excitation from at rest initial conditions. The closed-forms of the two Vanmarcke hazard 

functions are obtained using the closed-form solutions for the time-variant bandwidth parameter 

characterizing the non-stationary stochastic process representing the displacement response considered.

These approximate solutions for the time-variant failure probability are compared with the well known 

Poisson approximation and accurate simulation results obtained via the Importance Sampling using 
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Elementary Events (ISEE) method for two application examples: (1) a set of linear elastic SDOF systems, 

with different natural periods, damping ratios and response threshold levels, and (2) an idealized yet 

realistic three-dimensional asymmetric steel building model, both subjected to white noise base excitation 

from at rest initial conditions. For the second application example, retrofit of the given building with 

viscous dampers is also considered, serving a two-fold purpose: (1) to illustrate the use of the newly 

available closed-form approximations of the failure probability for non-classically damped linear elastic 

systems, and (2) to show an example of practical use in structural engineering of the presented analytical 

derivations.  

The originality of the work presented here stems from the use, in the classical and modified Vanmarcke 

approximations to the first-passage reliability problem, of recently obtained exact closed-form solutions 

for the time-variant bandwidth parameter of the response of classically and non-classically damped linear 

elastic systems. To the authors’ knowledge, this is the first time that the exact closed-form solutions for 

the Vanmarcke approximations are presented for non-stationary random vibration problems. Based on 

benchmark examples, these analytical approximate solutions are then compared with accurate simulation 

results obtained from the relatively recent Importance Sampling using Elementary Events (ISEE) method, 

allowing a confident appraisal of their absolute and relative accuracy under different conditions and 

especially in non-stationary random vibration. It is noteworthy that the computational cost of the 

presented closed-form analytical approximations of the time-variant failure probability is several orders of 

magnitude smaller than the one associated with the ISEE simulation method. From the results presented

in this study, it is observed that the two Vanmarcke approximations provide estimates of the time-variant 

failure probability for the first-passage problem that are significantly more accurate than the simpler 

Poisson approximation and the analytical upper bound. On the other hand, the relative accuracy of the 

classical and modified Vanmarcke approximations can be evaluated only on a case by case basis and 

deserves further studies to be better understood. The accuracy of the two analytical Vanmarcke 

approximations of the time-variant failure probability is sufficient for common engineering applications.

These closed-form approximations of the time-variant failure probability provide benchmark solutions 
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particularly useful to validate, in the elastic range, numerical solutions required for the first-passage 

problem associated with the non-stationary response of nonlinear hysteretic structural systems subjected 

to stochastic loading. In addition, the small computational cost of these closed-form analytical 

approximations renders them very valuable for practical purposes, e.g., for design-oriented parametric 

studies.      
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TABLE CAPTIONS 

Table 1. Time-variant failure probability for linear elastic SDOF system with natural period T0 = 0.5s 

subjected to white noise base excitation from at rest initial conditions 

Table 2. Undamped natural frequencies and description of vibration mode shapes of the three-

dimensional asymmetric building example 

FIGURE CAPTIONS 

Figure 1. Second-order stochastic moments of the response of linear elastic SDOF system with natural 

period T0 = 0.5s and damping ratio  = 0.05 (Y denotes the auxiliary process of process U). 

Figure 2. Mean up-crossing rate, classical and modified Vanmarcke hazard functions of the relative 

displacement response of linear elastic SDOF system with natural period T0 = 0.5s and 

damping ratio  = 0.05 relative to threshold level  = 2.0 U∞. 

Figure 3. Approximations of time-variant failure probability of linear elastic SDOF system with natural 

period T0 = 0.5s and damping ratio  = 0.05 for relative displacement threshold level =

2.0 U∞. 

Figure 4. Mean up-crossing rate, classical and modified Vanmarcke hazard functions of the relative 

displacement response of linear elastic SDOF system with natural period T0 = 0.5s and 

damping ratio  = 0.05 relative to threshold level  = 3.0 U∞. 

Figure 5. Approximations of time-variant failure probability of linear elastic SDOF system with natural 

period T0 = 0.5s and damping ratio  = 0.05 for relative displacement threshold level =

3.0 U∞. 

Figure 6. Mean up-crossing rate, classical and modified Vanmarcke hazard functions of the relative 

displacement response of linear elastic SDOF system with natural period T0 = 0.5s and 
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damping ratio  = 0.05 relative to threshold level  = 4.0 U∞. 

Figure 7. Approximations of time-variant failure probability of linear elastic SDOF system with natural 

period T0 = 0.5s and damping ratio  = 0.05 for relative displacement threshold level =

4.0 U∞. 

Figure 8. Comparison between relative displacement response hazard curves obtained via Poisson 

approximation, classical and modified Vanmarcke approximations, and ISEE results for 

linear elastic SDOF system with natural period T0 = 0.5s and damping ratio  = 0.05. 

Figure 9. Three-dimensional asymmetric building: (a) geometry, (b) floor view. 

Figure 10. Normalized variance and bandwidth parameter of horizontal displacement response in x-

direction at third floor (DOF UX3) for classically (subscript ‘u’) and non-classically (subscript 

‘d’) damped three-dimensional asymmetric building subjected to white noise base excitation. 

Figure 11. Mean out-crossing rate, classical and modified Vanmarcke hazard functions for the DOF UX3

and deterministic threshold  = 0.114m (classically damped 3-D building subjected to white 

noise base excitation).

Figure 12. Comparison of analytical approximations with ISEE estimate of the time-variant failure 

probability for DOF UX3 and deterministic threshold = 0.114m (classically damped 3-D

building subjected to white noise base excitation).

Figure 13. Mean out-crossing rate, classical and modified Vanmarcke hazard functions for the DOF UX3

and deterministic threshold = 0.114m (non-classically damped 3-D building subjected to 

white noise base excitation).

Figure 14. Comparison of analytical approximations with ISEE estimate of the time-variant failure 
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probability for DOF UX3 and deterministic threshold = 0.114m (non-classically damped 3-D

building subjected to white noise base excitation).

Figure 15. Normalized variance and bandwidth parameter of horizontal displacement response in y-

direction at third floor (DOF UY3) for classically (subscript ‘u’) and non-classically (subscript 

‘d’) damped three-dimensional asymmetric building subjected to white noise base excitation. 

Figure 16. Comparison of analytical approximations with ISEE estimate of the time-variant failure 

probability for DOF UY3 and deterministic threshold = 0.114m (classically damped 3-D

building subjected to white noise base excitation).

Figure 17. Comparison of analytical approximations with ISEE estimate of the time-variant failure 

probability for DOF UY3 and deterministic threshold = 0.114m (non-classically damped 3-D

building subjected to white noise base excitation).

Figure 18. Normalized variance and bandwidth parameter of horizontal drift in the x-direction between 

third and second floors ( X3 = UX3 - UX2) for classically (subscript ‘u’) and non-classically 

(subscript ‘d’) damped 3-D building subjected to white noise base excitation. 

Figure 19. Comparison of analytical approximations with ISEE estimate of the time-variant failure 

probability for X3 and deterministic threshold = 0.114m (classically damped 3-D building 

subjected to white noise base excitation).

Figure 20. Comparison of analytical approximations with ISEE estimate of the time-variant failure 

probability for X3 and deterministic threshold  = 0.114m (non-classically damped 3-D

building subjected to white noise base excitation).   

Figure 21. Normalized variance and bandwidth parameter of horizontal displacement response in x-

direction at third floor (DOF UX3) for classically (subscript ‘u’) and non-classically (subscript 
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‘d’) damped three-dimensional asymmetric building subjected to time-modulated colored 

noise base excitation. 

Figure 22. Mean out-crossing rate, classical and modified Vanmarcke hazard functions for the DOF UX3

and deterministic threshold  = 0.114m (classically damped 3-D building subjected to time-

modulated colored noise base excitation).

Figure 23. Comparison of analytical approximations with ISEE estimate of the time-variant failure 

probability for DOF UX3 and deterministic threshold  = 0.114m (classically damped 3-D

building subjected to time-modulated colored noise base excitation).

Figure 24. Mean out-crossing rate, classical and modified Vanmarcke hazard functions for the DOF UX3

and deterministic threshold  = 0.114m (non-classically damped 3-D building subjected to 

time-modulated colored noise base excitation).

Figure 25. Comparison of analytical approximations with ISEE estimate of the time-variant failure 

probability for DOF UX3 and deterministic threshold  = 0.114m (non-classically damped 3-D

building subjected to time-modulated colored noise base excitation).
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Table 1: Time-variant failure probability for linear elastic SDOF system with natural period T0 = 0.5s 

subjected to white noise base excitation from at rest initial conditions 

Damping 
ratio 

Estimates

2.0 U∞ 3.0 U∞ 4.0 U∞

t = 5T0 t = 10T0 t = 5T0 t = 10T0 t = 5T0 t = 10T0

1%

P 0.030 0.339 8.1e-5 7.7e-3 2.9e-8 3.8e-5

VM 0.018 0.166 5.7e-5 4.1e-3 2.3e-8 2.4e-5

mVM 0.015 0.129 4.8e-5 3.1e-3 2.0e-8 1.9e-5

ISEE 0.016 0.123 5.5e-5 3.3e-3 2.5e-8 2.2e-5

5%

P 0.507 0.868 0.038 0.134 7.7e-4 3.8e-3

VM 0.346 0.678 0.026 0.087 5.8e-4 2.7e-3

mVM 0.301 0.607 0.022 0.074 5.1e-4 2.4e-3

ISEE 0.323 0.601 0.025 0.076 6.1e-4 2.7e-3

10%

P 0.641 0.907 0.070 0.168 1.9e-3 5.3e-3

VM 0.506 0.798 0.053 0.126 1.6e-3 4.3e-3

mVM 0.462 0.752 0.048 0.114 1.5e-3 3.9e-3

ISEE 0.521 0.801 0.054 0.122 1.7e-3 4.6e-3
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 2

Table 2: Undamped natural frequencies and description of vibration mode shapes of the three-

dimensional asymmetric building example 

Mode # i [rad/s] Ti [s] Mode Shape Description

1 15.97 0.393 x-translation

2 24.12 0.261 y-translation + torsion

3 36.56 0.172 x-translation

4 41.21 0.153 y-translation + torsion

5 56.74 0.111 y-translation + torsion

6 56.98 0.110 x-translation

7 73.88 0.085 y-translation + torsion

8 95.15 0.066 y-translation + torsion

9 127.69 0.049 y-translation + torsion
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